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ABSTRACT

When one considers the e�ect in the physical space, Daubechies-based wavelet

methods are equivalent to �nite di�erence methods with grid re�nement in regions of

the domain where small scale structure exists. Adding a wavelet basis function at a

given scale and location where one has a correspondingly large wavelet coe�cient is,

essentially, equivalent to adding a grid point, or two, at the same location and at a

grid density which corresponds to the wavelet scale. This paper introduces a wavelet-

optimized �nite di�erence method which is equivalent to a wavelet method in its

multiresolution approach but which does not su�er from di�culties with nonlinear

terms and boundary conditions, since all calculations are done in the physical space.

With this method one can obtain an arbitrarily good approximation to a conservative

di�erence method for solving nonlinear conservation laws.
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1 Introduction

In the numerical simulation of equations which model physics it is common that small

scale structure will exist in only a small percentage of the domain. If one chooses

a uniform numerical grid �ne enough to resolve the small scale features then in the

majority of the domain the solution to the equations will be over resolved. One would

like, ideally, to have a dense grid where small scale structure exists and a sparse grid

where the solution is composed only of large scale features.

Consider now a Daubechies-based wavelet system. Wavelets provide a natural

mechanism for decomposing a solution into a set of coe�cients which depend on scale

and location. One can then work with the solution in a compressed form where one

works only with the wavelet coe�cients which are larger in magnitude than a given

threshold. Wavelets, therefore, sound ideal for solving the type of problem mentioned

the previous paragraph. There are, however, serious problems matching the order

of di�erentiation accuracy at the boundary for nonperiodic boundary conditions, see

[9], with the superconvergence encountered with periodic boundary conditions, see

[7]. Furthermore, wavelet methods generally require a tranformation between the

physical space and the coe�cient space for either evaluation of nonlinear terms or for

di�erentiation.

In this paper a wavelet method which satis�es the goals of the �rst paragraph

while using the wavelet machinery outlined in the second paragraph without the

accompanying di�culties encountered at the boundaries and the expense of constantly

tranforming between the physical space and the coe�cient space will be introduced.

That is, the new method utilizes the strength of wavelets, scale detection and data

compression, while avoiding the di�culties by using wavelets in their �nite di�erence

form.

The following is a list of the sections of this paper with the noteworthy points.
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1. Introduction

2. Wavelet De�nitions and Notation

3. Finite Di�erence Grid Re�nement and Wavelets:

This section will establish that Daubechies-based wavelet methods are equal to

�nite-di�erence methods with grid re�nement.

4. The Wavelet-Optimized, Adaptive Grid, Finite Di�erence Method:

In this section a new numerical method which utilizes the strength of wavelets

and avoids the di�culties will be proposed. That is, wavelets will be utilized

to de�ne the grid for �nite di�erence methods. The new method is named,

`The Wavelet-Optimized, Adaptive Grid, Finite Di�erence Method', or simply

`WOFD'.

5. WOFD applied to Burgers' equation:

Numerical results of the wavelet-optimized, adaptive grid, �nite di�erence method

applied to Burgers' equation with periodic and nonperiodic boundary conditions

will be given.

6. Accuracy of WOFD:

The error in �nite-di�erence derivative approximation on a 5-point stencil is of

the form,

Err = �1�2�3�4
1

120
f (v)(a):

Think of f(x) as a pure mode, f(x) = eix�, where � is frequency or wave number.

When the data is locally smooth, i.e., composed of low frequencies, the wavelet

coe�cients are small and consequently the �'s are allowed to be large. When

the data is locally oscillatory, i.e., composed of high frequencies, the wavelet

coe�cients are large and WOFD reduces the size of the �'s. The e�ect is

that the derivative approximation error will not grow faster than linearly with
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respect to frequency. Recall that without grid adjustment this error would grow

as a �fth power of frequency for a fourth order scheme.

7. Stability of WOFD:

Analytical stability methods are beyond reach due the arbitrary nature of the

grid. But, in practice the method displays no instability when applied to Burg-

ers' equation.

8. E�ciency of WOFD:

The WOFD method �nds an approximation to the solution found on the �nest

scale across the whole domain. The e�ciency depends on the rate of data

compression. That is, if the �nest scale has N grid points and the WOFD

averages, say, N0 grid points, then the WOFD method will �nd the solution

using, roughly, N0

N
times the number of operations used to �nd the �nest grid

solution.

9. WOFD in Higher Dimensions

The discussion here will be limited to grid selection. It will be seen from a few

examples that WOFD is an e�ective method for grid selection in higher dimen-

sions. The examples given are for two dimensions. The local `spectral analysis'

of a wavelet method provides exactly the information needed to thoroughly

understand the data and, hence, de�ne a grid properly.

10. Conclusion:

TheWOFDmethod is an e�cient and stable alternative to a Daubechies wavelet

method. The WOFD method and a wavelet method are essentially the same.

The only signi�cant di�erence is the manner in which the grid is re�ned. The

WOFD method, by contrast, avoids di�culties with nonlinear terms and bound-

aries by performing all calculations in the physical space.
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2 Wavelet De�nitions and Relations

The term wavelet is used to describe a spatially localized function. `Localized' means

that the wavelet has compact support or that the wavelet almost has compact sup-

port in the sense that outside of some interval the amplitude of the wavelet decays

exponentially. We will consider only wavelets that have compact support and that

are of the type de�ned by Daubechies [4] which are supported on [0; 2M � 1], where

M is the number of vanishing moments de�ned later in this section.

To de�ne Daubechies wavelets, consider the two functions �(x) and  (x) which

are solutions to the following equations:

�(x) =
p
2
L�1X
k=0

hk�(2x� k); (1)

 (x) =
p
2
L�1X
k=0

gk�(2x� k); (2)

where �(x) is normalized, Z
1

�1

�(x)dx = 1: (3)

Let,

�jk(x) = 2�
j

2�(2�jx� k); (4)

and

 j
k(x) = 2�

j

2 (2�jx� k); (5)

where j; k 2 Z, denote the dilations and translations of the scaling function and the

wavelet.

The coe�cients H = fhkgL�1k=0 and G = fgkgL�1k=0 are related by gk = (�1)khL�k for
k = 0; :::; L� 1. Furthermore, H and G are chosen so that dilations and translations

of the wavelet,  j
k(x), form an orthonormal basis of L2(R) and so that  (x) has M

vanishing moments. In other words,  j
k(x) will satisfy

�kl�jm =
Z
1

�1

 
j

k(x) 
m
l (x)dx; (6)
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where �kl is the Kronecker delta function. Also,  (x) =  0
0(x) satis�es

Z
1

�1

 (x)xmdx = 0; (7)

for m = 0; :::;M � 1. Under the conditions of the previous two equations, for any

function f(x) 2 L2(R) there exists a set fdjkg such that

f(x) =
X
j2Z

X
K2Z

djk 
j
k(x); (8)

where

djk =
Z
1

�1

f(x) j
k(x)dx: (9)

The number of vanishing moments of the wavelet  (x) de�nes the accuracy of

approximation. The two sets of coe�cients H and G are known in signal processing

literature as quadrature mirror �lters [5]. For Daubechies wavelets the number of

coe�cients in H and G, or the length of the �lters H and G, denoted by L, is related

to the number of vanishing momentsM by 2M = L. For example, the famous Haar

wavelet is found by de�ning H as h0 = h1 = 1. For this �lter, H, the solution to

the dilation equation (1), �(x), is the box function: �(x) = 1 for x 2 [0; 1] and

�(x) = 0 otherwise. The Haar function is very useful as a learning tool, but it

is not very useful as a basis function on which to expand another function for the

important reason that it is not di�erentiable. The coe�cients, H, needed to de�ne

compactly supported wavelets with a higher degree of regularity can be found in [4].

As is expected, the regularity increases with the support of the wavelet. The usual

notation to denote a Daubechies wavelet de�ned by coe�cients H of length L is DL.

It is usual to let the spaces spanned by �jk(x) and  j
k(x) over the parameter k,

with j �xed, to be denoted by Vj and Wj respectively:

Vj =
span

k2Z
�jk(x); (10)

Wj =
span

k2Z
 
j
k(x): (11)
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The spaces Vj and Wj are related by [4]

::: � V1 � V0 � V�1 � :::; (12)

and that

Vj = Vj+1
M

Wj+1: (13)

The previously stated condition that the wavelets form an orthonormal basis of L2(R)

can now be written as,

L2(R) =
M
j2Z

Wj : (14)

Two �nal properties of the spaces Vj are that

\
j2Z

Vj = f0g; (15)

and [
j2Z

Vj = L2(R): (16)

Of course, in�nite sums and unions are meaningless when one begins to implement

a wavelet expansion on a computer. In some way one must limit the range of the

scale parameter j and the location parameter k. Consider �rst the scale parameter j.

As stated above, the wavelet expansion is complete: L2(R) =
L

j2ZWj. Therefore,

any f(x) 2 L2(R) can be written as,

f(x) =
X
j2Z

X
k2Z

d
j
k 

j
k(x);

where due to orthonormality of the wavelets djk =
R
1

�1
f(x) j

k(x). In this expan-

sion, functions with arbitrarily small-scale structures can be represented. In practice,

however, there is a limit to how small the smallest structure can be. This would

depend, for example, on how �ne the grid is in a numerical computation scenario or

perhaps what the sampling frequency is in a signal processing scenario. Therefore,

on a computer an expansion would take place in a space such as

V0 = W1 �W2 � . . .�WJ � VJ ; (17)
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and would appear as,

PV0f(x) =
X
k2Z

sJk�
J
k (x) +

JX
j=1

X
k2Z

d
j
k 

j
k(x); (18)

where again due to orthonormality of the basis functions djk =
R
1

�1
f(x) j

k(x), and

sJk =
R
1

�1
f(x)�Jk (x). In this expansion, scale j = 0 is arbitrarily chosen as the �nest

scale that is needed, and scale J would be the scale at which a kind of local average,

�Jk (x), provides su�cient large scale information. In language that is likely to appeal

to the electrical engineer it can be said that �Jk (x) represents the direct current portion

of a signal at location k and that  j

k(x) represents the alternating current portion of

a signal at, very roughly, frequency j and location k. As stated above, one must

also limit the range of the location parameter k If one assumes periodicity, then the

periodicity of f(x) induces periodicity on all wavelet coe�cients, sjk and d
j
k, with

respect to k. Without periodicity, the location parameter k will begin at 1 with the

left-hand side boundary functions and end with some maximum number N at the

right-hand side boundary functions.

This completes the de�nition of wavelets.
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3 Finite Di�erence Grid Re�nement andWavelets

In this section it will be shown that Daubechies-based wavelet methods when con-

sidered in the physical space are equivalent to explicit �nite di�erence methods with

grid re�nement. In a Daubechies wavelet method the `re�nement' is accomplished by

adding wavelet bases functions in regions where structure exists corresponding to the

scale of the wavelet used for analysis. In a �nite di�erence method the `re�nement' is

accomplished by adding grid points in regions chosen by some grid re�nement mech-

anism. In this section it is argued that since wavelet methods correspond to central

�nite di�erence operators when the grid is uniform and since wavelet methods contain

a natural and e�ortless mechanism for `grid re�nement', then one can simply use the

wavelets to re�ne a grid for �nite di�erence operators. In this way one can maintain

the superconvergence encountered with periodic boundary conditions, see [7], which

is lost when one constructs wavelets on an interval, see [9]. That is, boundary condi-

tions are imposed in the same manner as for �nite di�erence operators. Furthermore,

there is no longer a di�culty with nonlinear terms requiring constant transformation

between the physical space and the coe�cient space since all calculations are done in

the physical space.

This section contains four subsections:

1. The wavelet decomposition matrix will be constructed.

2. It will be seen that under the assumption of periodicity and without data com-

pression that the e�ect in the physical space of di�erentiation in theD4 subspace

V0 is exactly the same as di�erentiation with the optimal central 4th-order �nite

di�erence operator.

3. Now we compare wavelets and �nite di�erence in the subspace V0 = W1�V1. If
�x is the grid spacing in V0 then 2�x is the grid spacing in V1 and the wavelet

coe�cients inW1 indicate if re�nement is needed for a local grid spacing of �x.
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4. Finally, a division of the subspace V0 which might be used in practice is studied:

V0 = W1�W2�W3�V3. Similar to above, the grid spacing in the subspace V3

would be 8�x. The �rst re�nement is controlled by the subspace W3 which can

re�ne locally to a grid spacing 4�x. Likewise, the subspace W2 re�nes locally

to a grid spacing of 2�x and W1 to a local grid spacing of �x.

3.1 Wavelet Decomposition Matrix

The wavelet decomposition matrix is the matrix embodiment of the dilation equation

de�ning the scaling function and the accompanying equation de�ning the wavelet.

The following two recursion relations for the coe�cients sjk and d
j
k can be found from

equations (1) and (2), respectively:

sjk =
n=2MX
n=1

hns
j�1
n+2k�2; (19)

and

djk =
n=2MX
n=1

gns
j�1
n+2k�2: (20)

Denote the decomposition matrix embodied by these two equations, assuming peri-

odicity, by P j;j+1
N�N where the matrix subscripts denote the size of the matrix, and the

superscripts indicate that P is decomposing from scaling function coe�cients at scale

j to scaling function and wavelet function coe�cients at scale j + 1. Let ~sj contain

the scaling function coe�cients at scale j. (Note that when vector notation is used

the scale is given as a subscript.) P therefore maps ~sj onto ~sj+1 and ~dj+1:

P
j;j+1
N�N :

h
~sj
i
!
"
~sj+1
~dj+1

#
: (21)

Note that the vectors at scale j + 1 are half as long as the vectors as scale j. To

illustrate further, suppose the wavelet being used is the four coe�cient D4 wavelet,

and suppose one wants to project from 8 scaling function coe�cients at scale j to 4

scaling function coe�cients at scale j + 1 and 4 wavelet coe�cients at scale j + 1.
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The decomposition matrix in this case is,

P
j;j+1
8�8 �

2
66666666666664

h1 h2 h3 h4 0 0 0 0
0 0 h1 h2 h3 h4 0 0
0 0 0 0 h1 h2 h3 h4
h3 h4 0 0 0 0 h1 h2
g1 g2 g3 g4 0 0 0 0
0 0 g1 g2 g3 g4 0 0
0 0 0 0 g1 g2 g3 g4
g3 g4 0 0 0 0 g1 g2

3
77777777777775
; (22)

where the periodicity is seen from the coe�cients `wrapping around'.

Now let us consider di�erentiation. Let the four matrices Aj
N�N , B

j
N�N , C

j
N�N ,

and Rj
N�N , see [7] and [1], contain the derivative projection coe�cients,

Aj : ~dj ! ~�dj ;

Bj : ~sj ! ~�dj;

Cj : ~dj ! ~�sj;

Rj : ~sj ! ~�sj ;

where ~�sj and
~�dj denote the coe�cients of the expansion of the derivative of a function

which is initially de�ned by the expansion coe�cients ~sj and ~dj . The exact form of the

matricesA, B, and C is not important for the discussion here. The important point is

the form of the matrix R. It is always a �nite di�erence operator. For the D4 wavelet

R corresponds to the optimal central 4th-order �nite di�erence operator. For higher

order wavelets, D6, D8, etc., R is a �nite di�erence operator, but it is not optimal

in the sense of using the minimum number of coe�cients to obtain a given accuracy.

The numerical values of the coe�cients were found in [1] and the superconvergence

accuracy was proven in general in [7]. For the D4 wavelet an explicit 8 � 8 example
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of matrix R is,

R8�8 =

2
66666666666664

0 2
3

� 1
12

0 0 0 1
12

�2
3

�2
3

0 2
3

� 1
12

0 0 0 1
12

1
12

�2
3

0 2
3

� 1
12

0 0 0
0 1

12
�2

3
0 2

3
� 1

12
0 0

0 0 1
12

�2
3

0 2
3

� 1
12

0
0 0 0 1

12
�2

3
0 2

3
� 1

12

� 1
12

0 0 0 1
12

�2
3

0 2
3

2
3

� 1
12

0 0 0 1
12

�2
3

0

3
77777777777775
: (23)

We will now see how `grid re�nement' is accomplished in a wavelet scenario by

examining three divisions of the subspace V0 in three following three subsections.

3.2 Wavelet Expansion and Derivative in V0

One can calculate the derivative of a wavelet expansion at any level in the wavelet

decomposition. This subsection will explore the �rst of three of the options. To be

explicit, suppose that a periodic function f(x) has been approximated on a grid with

16 scaling function coe�cients to get ~s0, and for the current argument assume that

the coe�cients have been calculated exactly. Note that periodicity of f(x) induces

periodicity on the coe�cients ~s0. The coe�cients of the expansion of d
dx
f(x) in V0

are found from ~s0 by an application of the matrix R0
16�16:

2
666666666666666666666666666666664

s01
s02
s03
s04
s05
s06
s07
s08
s09
s010
s011
s012
s013
s014
s015
s016

3
777777777777777777777777777777775

1

�x
R0

16�16�!

2
666666666666666666666666666666664

�s01
�s02
�s03
�s04
�s05
�s06
�s07
�s08
�s09
�s010
�s011
�s012
�s013
�s014
�s015
�s016

3
777777777777777777777777777777775

: (24)
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Let us now examine the entire process of going from point values in the physical

space to scaling function coe�cients in V0, di�erentiating, and �nally returning to

point values of the di�erentiated function in the physical space. Begin with f(x) 2
L2(R) de�ned at 16 evenly-spaced points over [��; �) and let f(x) is 2� periodic.

To di�erentiate the samples of f(x), ~f , with the 4-th order optimal central �nite

di�erence operator, say Dfd4, we get,

~�f = Dfd4
~f: (25)

Now, suppose that we have mapped these 16 samples into the scaling function coe�-

cients in V0 by applying the circular, periodicity implies circularity, see [7], quadrature

matrix Q,

~s0 = Q16�16
~f: (26)

We now �nd ~�s0 by applying
1
�x
R16�16. The two matrices R and Q are, however, both

circular and, hence, commute:

~�s0 = Q16�16

1

�x
R16�16

~f: (27)

Now, returning to the physical space we get,

~�f = Q�116�16Q16�16

1

�x
R16�16

~f; (28)

and we are back to equation (25) again since,

Dfd4 � 1

�x
R16�16: (29)

Hence, we have shown that under the assumption of periodicity and without

data compression that the D4 wavelet di�erentiation corresponds exactly to optimal

central 4th-order �nite di�erencing. Note that data compression is the goal of any

wavelet method. The embodiment of data compression in the physical space is a

nonuniform grid. That is, the grid must be dense in regions where small structure

requires �ne resolution and the grid can be sparse when the data is composed of large

scale components.
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Now we move to the �rst decomposition of V0 =W1�V1 in which data compression

can be achieved.

3.3 Wavelet Expansion and Derivative in W1 � V1

Consider now a decomposition of the vector of scaling function coe�cients ~s0 onto

the scaling function and wavelet coe�cients at scale j = 1 by an application of the

matrix P 0;1
16�16: 2

666666666666666666666666666666664

s01
s02
s03
s04
s05
s06
s07
s08
s09
s010
s011
s012
s013
s014
s015
s016

3
777777777777777777777777777777775

P
0;1
16�16�!

2
66666666666664

s11
s12
s13
s14
s15
s16
s17
s18

3
77777777777775

2
66666666666664

d11
d12
d13
d14
d15
d16
d17
d18

3
77777777777775

: (30)

As in V0, we have 16 basis functions, but now the subspace V0 is decomposed into

`low frequency', V1, and `high frequency', W1, components: V0 = V1 �W1. In order

to calculate the coe�cients of the derivative expansion in V1 � W1 the following

projections are calculated:2
4 ~�s1
~�d1

3
5 = 1

2�x

"
R1
8�8 C1

8�8

B1
8�8 A1

8�8

#
�
"
~s1
~d1

#
: (31)

If one now applies the matrix (P 0;1
16�16)

T (T denotes transpose and hence inverse for

this unitary matrix) to the derivative coe�cients at scale j = 1 one gets,

h
~�s0

i
= (P 0;1

16�16)
T �
2
4 ~�s1
~�d1

3
5 ; (32)

and one gets exactly the same coe�cients as before when the matrix 1
�x
R0
16�16 was

applied to ~s0.
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Now suppose that f(x) is smooth enough such that a grid of eight points provides

su�cient resolution. De�ne ~f2 to be the 8 element vector containing every other entry

of the 16 element vector ~f . 4-th order di�erentiation of ~f2 is performed by applying

1
2�x

R8�8 ,

~�f2 =
1

2�x
R8�8

~f2: (33)

Similar to above, we project the eight dimensional ~f2 into the eight dimensional

wavelet subspace V1 using Q8�8 and di�erentiate to get,

~�s1 =
1

2�x
R8�8Q8�8

~f2; (34)

followed by projection back into the physical space with the matrix Q�18�8 we get

equation (33) again.

That is, we have seen that if we work only in V0 that we have 4th-order �nite

di�erencing with a grid spacing of �x, whereas if we work only in V1 we have 4th-

order �nite di�erencing with a grid spacing of 2�x. But, the two subspaces V0 and V1

are related by V0 = V1 �W1. Recall, that the subspace W1 contains bases functions

which are locally oscillatory and are compactly supported. An inner product of these

bases with the data f(x) will detect local oscillations in f(x) and provide exactly the

information necessary to re�ne the grid locally from 2�x to �x. This wavelet grid

re�nement mechanism can be used not only to add wavelet bases functions where one

has a large inner product but also to re�ne the grid in the same region and at a scale

corresponding to the wavelet scale.

3.4 Wavelet Expansion and Derivative in W1 �W2 �W3 � V3

Let us close this section with a wavelet decomposition that one might use in practice.

That is, again V0 denotes the �nest scale subspace and we decompose V0 as,

V0 = W1 �W2 �W3 � V3: (35)
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The vector of coe�cients in this subspace is obtained by the following decompositions:

2
666666666666666666666666666666664

s01
s02
s03
s04
s05
s06
s07
s08
s09
s010
s011
s012
s013
s014
s015
s016

3
777777777777777777777777777777775

P
0;1
16�16�!

2
66666666666664

s11
s12
s13
s14
s15
s16
s17
s18

3
77777777777775

2
66666666666664

d11
d12
d13
d14
d15
d16
d17
d18

3
77777777777775

P
1;2
8�8�!

2
6664
s21
s22
s23
s24

3
7775

2
6664
d21
d22
d23
d24

3
7775

2
66666666666664

d11
d12
d13
d14
d15
d16
d17
d18

3
77777777777775

P
2;3
4�4�!

"
s31
s32

#
"
d31
d32

#
2
6664
d21
d22
d23
d24

3
7775

2
66666666666664

d11
d12
d13
d14
d15
d16
d17
d18

3
77777777777775

: (36)

Let us suppose that we have performed the above wavelet decomposition on a

vector of data points, ~f , at some point during a simulation which contains data

at many di�erent scales. Furthermore, let there be a shock, or a near shock, near

the right-hand boundary. The coe�cients s31 and s32 represent local averages in the

subspace V3 corresponding to the `base grid' of size 8�x and will not yield much useful

information with respect to the shock. The coe�cients d31 and d
3
2 of the subspace W3

will yield the presence of oscillations of relatively large scale. A true shock contains

all frequencies and one would expect to have some coe�cient perturbation even in

W3 yielding grid re�nement to a grid spacing of 4�x in a neighborhood of the shock.

The coe�cients d21, d
2
2, d

2
3, and d

2
4 in the subspace W2 will detect oscillations at the

corresponding scale only near the shock. That is, the �rst two coe�cients d21 and d
2
2

are responsible for detecting small scale structure at the left-hand side of the domain

which is away from the shock, and we, therefore, expect that they will be near zero

in magnitude. The coe�cients d23 and d24, on the other hand, are positioned near

the shock and will have a relatively large amplitude indicating the presence of small

scales. The grid will, therefore, be re�ned to a spacing of 2�x at the right-hand side

of the domain. Likewise, the remaining coe�cients in the subspace W1 will re�ne the
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grid to a spacing of �x at the right-hand side of the domain.

In conclusion, this section has been devoted to �rst illustrating how Daubechies-

based wavelet methods are in essence �nite di�erence methods with grid re�nement,

and second to illustrating how the Daubechies-based wavelets can be used to de-

�ne a grid for �nite di�erence methods. The next section will make this symbiotic

relationship between Daubechies wavelets and �nite di�erence methods formal.
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4 The Wavelet-Optimized, Adaptive Grid Finite

Di�erence Method, (WOFD)

The new method is to apply �nite di�erence on a grid which is de�ned by the magni-

tude of wavelet coe�cients at various scales. That is, wavelets can detect oscillations

in a function at any location and scale. Given a function f(x) for x 2 I, where I is

some interval, one decomposes f(x) into a set of wavelet coe�cients which depend

on two parameters, one for location and one for scale, say djk, where k is the location

parameter and j is the scale parameter. If a wavelet coe�cient is large in magnitude,

jdjkj > T; (37)

or large in energy (In practice the two criteria yield roughly the same grid.),

(djk)
2 > T; (38)

where T is a coe�cient threshold chosen by the user, then WOFD adds a grid point,

or two, at location k and at a grid density corresponding to the scale j. That is,

WOFD de�nes a grid which will completely resolve a function across the entire domain

without over resolving it where it is relatively smooth, or composed only of large scale

structure. For the speci�c case of the D4 wavelet outlined in the previous section, the

D4 wavelet decomposition provides the optimal grid for 4th-order �nite di�erencing.

The grid de�nition should be made by a Daubechies wavelet which corresponds in

terms of superconvergence accuracy to the accuracy of the �nite di�erence operator.

That is, it was proven in [7] that the di�erentiation matrix for the Daubechies wavelet

D2M , whereM is the number of vanishing moments, displays di�erentiation accuracy

of order 2M under the assumptions of periodicity and a uniform grid. Recall, that this

wavelet subspace can only represent exactly the �rst M polynomials as determined

by the number of vanishing moments. This order of accuracy 2M should equal the

order of accuracy of the �nite di�erence operator for optimal grid selection.

In the next section WOFD will be applied to Burgers' equation.
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5 WOFD Applied to Burgers' Equation

In this section WOFD will be applied to Burgers' equation,

@U

@t
= �U @U

@x
+ �

@2U

@x2
; (39)

with the initial condition,

u(x; 0) =
1

3
+
2

3
sin(2�x): (40)

The goal of this section is to illustrate that WOFD using the D4 wavelet produces

a solution on a nonuniform reduced grid which is `equivalent in character' to the

solution provided by 4th order �nite di�erencing on the �nest uniform grid. That

is, for a given viscosity, �, there exists a grid size �ne enough such that oscillations

do not develop at the `shock'. This can be made more precise by saying that one

has a grid �ne enough such that the total variation of the solution does not increase.

`Equivalent in character' means that the total variation of the solution provided by

WOFD increases if and only if the total variation of the solution produced by �nite

di�erencing on the �nest uniform grid increases.

In all the following plots the uniform �nite di�erencing is provided by the optimal

central 4th-order �nite di�erence operator. The temporal discretization is achieved

by 4th-order Runge-Kutta. The WOFD coe�cient threshold which determines which

grid points to use based on the wavelet coe�cient magnitude is set to T = :001.

Note that when the WOFD coe�cient threshold is set to T = 0 that one gets �nite

di�erencing on the uniform �nest grid. In addition, if the coe�cient threshold is set

to a very large number, say T = 100, then one gets �nite di�erencing on a uniform

sparse grid. The size of this sparse grid is determined by the number of wavelet

decompositions one speci�es.

5.1 Periodic Boundary Conditions

In �gure (1) WOFD is compared to �nite di�erencing on uniform grid sizes 32, 64,

and 128. The upper left-hand plot has the WOFD solution superimposed on the �nite
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di�erence solution. The two solutions are visually indistinguishable. Along the x-axis

of the plot an `x' is placed at every position where a WOFD grid point is used. One

can see that the grid points are dense at the shock and sparse where the solution is

smooth.

The remaining three plots show �nite di�erence solutions on various uniform grid

sizes. One sees oscillations for grid sizes 32 and 64 but not for grid size 128.

Figure (4) provides an additional plot for periodic boundary conditions with a

slightly larger viscosity.

5.2 Nonperiodic Boundary Conditions

The boundary conditions considered here are such that the boundary values of the

solution are required to be �xed at the initial condition values,

u(0; t) = u(1; t) =
1

3
: (41)

In all the plots, di�erentiation at the boundary for the uniform �nite di�erence method

is achieved by the optimal 4th order one sided �nite di�erence coe�cients, see [2].

For WOFD both 4th order and 3rd order boundary di�erentiation will be considered.

In Figure (2) the di�erentiation at the boundary is 4th order, and, as above,

WOFD provides a solution which is `equivalent in character' to the �nite di�erence

solution on the �nest grid, 128 grid points, while reducing the number of degrees-of-

freedom necessary to achieve this solution.

In Figure (3) the di�erentiation at the boundary is 3rd order. The solution for the

3rd-order boundary di�erentiation is good, but a slight di�erence can be seen with

the �nite di�erence method on the �nest grid. Again, �nite di�erence on more coarse

grids oscillates more at the shock than the �nest grid solution.

Figure (5) provides an additional plot illustrating the solution provided by WOFD

for the nonperiodic case.
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Figure 1: Illustration of equivalence of WOFD to an equivalent order �nite di�erence
method applied across the entire domain at the �nest scale. The boundary conditions
are periodic. Final time = 2, Viscosity = .02.
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Figure 2: Illustration of equivalence of WOFD to an equivalent order �nite di�erence
method applied across the entire domain at the �nest scale. The boundary values
are �xed at the initial condition values. Di�erentiation at the boundary is 4th order.
Final time = .3, Viscosity = .005.
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Figure 3: Illustration of equivalence of WOFD to an equivalent order �nite di�erence
method applied across the entire domain at the �nest scale. The boundary values
are �xed at the initial condition values. Di�erentiation at the boundary is 3rd order.
Final time = .3, Viscosity = .005.
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Figure 4: WOFD applied to Burgers equation. Boundary conditions are periodic,
�nal time is 2, viscosity is .05.
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Figure 5: WOFD applied to Burgers equation. Boundary values are �xed to initial
condition values, �nal time is .3, viscosity is .02.
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6 Accuracy of WOFD

In this section the order of accuracy will be examined. For numerical methods where

the grid is uniform the order of accuracy is clearly de�ned. For WOFD, on the other

hand, the discussion of accuracy is slightly more complicated. That is, it can be said

that WOFD approximates a 4th-order �nite di�erence method as well as one desires,

and when the coe�cient threshold is set to zero then WOFD is truly 4th-order. So,

WOFD approximates methods of a given order as well as is desired. In addition, it

will be seen that the WOFD method has a very nice feature that the rate of growth

of the error in approximating the derivative is at most a linear function of frequency.

6.1 Error in Derivative Approximation

The �nite di�erence equations used in this paper use either a 4-point stencil or a

5-point stencil. The derivative approximation error for the equations on a 3-point

stencil will be given. The derivative approximation error for a larger stencil is an

obvious extension of the error given here.

Consider the following Lagrangian interpolation of a quadratic polynomial through

the three points: (x1; f(x1)), (x2; f(x2)), and (x3; f(x3)), for x1 < x2 < x3:

g(x) = (42)

f(x1)
(x� x2)(x� x3)

(x1 � x2)(x1 � x3)
+ f(x2)

(x� x1)(x� x3)

(x2 � x1)(x2 � x3)
+ f(x3)

(x� x1)(x� x2)

(x3 � x1)(x3 � x2)
:

If we di�erentiate g(x) and evaluate at x2 we get,

d

dx
g(x)jx2 =

d

dx
f(x)jx2 +�1�2

1

6
f (

000)(a); (43)

for some a 2 [x1; x3], where �1 = x2 � x1 and �2 = x3 � x2.

6.2 Control of Error Growth

As given above we will examine the special case of a 3-point stencil where the grid is

re�ned by the Haar wavelet. In practice I never use the Haar wavelet, but it is very

useful as an illustration tool.
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As given above the error is,

Err = �1�2

1

6
f (

000)(a): (44)

for some a 2 [x1; x3]. Now, let f be a pure sinusoid of frequency �: f(x) = ei�x. Then

the magnitude of the error becomes,

6jErrj = �1�2�
3: (45)

The grid re�nement mechanism used by WOFD is such that, roughly,

� =
1

�
: (46)

The magnitude of the error becomes,

6jErrj = �: (47)

That is, the re�nement mechanism keeps the rate of growth of the error linear with

respect to frequency. Whereas, without the grid re�nement the error grows as a cubic

in this case.

This is one particular re�nement mechanism, but is representative of a typical

re�nement method.

6.3 Relationship of Threshold Size to Solution

The grid for WOFD is chosen by the size of wavelet coe�cients found from a wavelet

decomposition of the numerical solution at a given time. One chooses a threshold

with which to measure the coe�cient size. That is, if the threshold is set to .001

then the grid is re�ned at a given location and scale whenever the wavelet coe�cients

at that location and scale are larger in magnitude than .001. If the threshold is set

to 0 then one gets �nite di�erence on an evenly-spaced grid at the �nest scale. The

question then becomes, what is the relationship between this threshold value and the

solution achieved by WOFD. As of now, a theoretical relationship does not exist but

a numerical relationship does. That is, if the threshold is set to T = 1e�p then one
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can expect that both the l1 and l1 di�erence between WOFD and �nite di�erence

at the �nest scale will be a constant times this threshold, say kT where k < 10. For

example, for a simulation with periodic boundary conditions, viscosity set at .01, and

the �nal time set to 2, an l1 di�erence of 3:27e�4 and an l1 di�erence of 2:31e�3

were found for a threshold value of T = 1e�3. This relationship was typical of all

simulations which were run.
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7 Stability of WOFD

The discussion of the stability of WOFD will be given in terms of the eigenvalues of

the di�erentiation matrix.

7.1 Eigenvalues of Di�erentiation Matrix

The di�erentiation matrix produced by this scheme will have a full set of eigenvectors.

We can, therefore, look at instability through the magnitude of the eigenvalues.

Recall that the WOFD method can produce essentially a completely arbitrary

grid. The di�erentiation matrix can, therefore, take on an unlimited number of forms.

For this reason, an analytical approach is not within reach. Therefore, experimental

results which give the magnitude of the eigenvalues of the di�erentiation after each

grid update will be given. On the following pages the eigenvalues will be given for

the matrix,

M = I +D�t+ 1=2D2(�t)2 + 1=6D3(�t)3 + 1=24D4(�t)4; (48)

which corresponds to WOFD being applied to the linear equation

ut = ux;

with 4th-order Runge-Kutta time discretization. The grid is the grid that is chosen

for the nonlinear Burgers' equation. It is seen that the magnitude of the eigenvalues

do sometimes exceed 1, but they rarely exceed 1 by very much. That is, for the

periodic case, considering the maximum eigenvalue for the 4th-order RK for every

grid encountered, the maximum eigenvalue magnitude for the entire run up to time 2

is 1.0004. This eigenvalue is close enough to 1 in magnitude not to excite instability.

In fact, the data would have to have a large component in the direction of the corre-

sponding eigenvector and one would have to iterate 100 times to get ampli�cation of

4% in the direction of this eigenvector.
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Figure 6: Eigenvalues of the 4th order Runge-Kutta di�erentiation matrix at time 2.
The boundary conditions are periodic.
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Figure 7: Eigenvalues of the 4th order Runge-Kutta di�erentiation matrix at time 2.
The boundary values are �xed at the initial condition values.
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8 E�ciency of WOFD

In a word, the e�ciency of the WOFD method depends primarily on the data com-

pression ratio. That is, we choose some �nest grid which captures all the details of

our solution throughout the entire run. Let's say that this �nest grid has N degrees-

of-freedom. Now choose how close, in j � j2, you desire your WOFD solution to be

to the solution on the �nest grid. Choosing this `closeness parameter' dictates the

data compression ratio. Let's say that the WOFD method needs only N0 degrees-

of-freedom to satisfy this criterion. Then, the amount of work done is, roughly, N0

N

times the amount of work done to get the solution on the �nest grid.

8.1 Work Involved for Grid Update

The grid update requires a number of steps. I will give a worst case scenario in

estimating the number of operations.

A grid update requires order N multiplies where N is the number of degrees-of-

freedom in the �nest scale. The constant that is multiplied times N is reasonably

large, and the following will show where the operations are used:

1. One must reconstruct the function on the �nest grid. This requires about 10N

multiplies.

2. Next, one must perform a wavelet decomposition. For a Daubechies 4 wavelet

decomposition the �lters are length 4. Therefore, the �rst decomposition re-

quires 4N multiplies. Likewise, the second decomposition requires 2N multi-

plies. The number of decompositions will determine the number of multiplies,

but let's say that this step, also, requires about 10N multiplies.

3. Choosing a grid from a wavelet decomposition does not require many operations,

but it does need a number of `IF-THEN' statements. There is roughly 1 `IF-

THEN' statement for each degree-of-freedom. Let me, once again, overestimate
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the cost of each `IF-THEN' and also compensate for a few other operations that

are necessary by saying this requires roughly 10N operations.

4. Once a grid is chosen the new di�erentiation matrix is found. This requires

about 40N0 multiplies in a worst case scenario. The second derivative �lter can

be found from the �rst derivative �lter by a convolution of each �lter. This

requires about 25N0 multiplies. Here, N0 is the number grid points used in the

compressed scenario. N0 is some fraction of N .

The total number of multiplies is the sum of all the above multiples. That is,

about 30N + 65N0. These numbers are rough, and we might as well round up to

be safe and say, 50N + 100N0 multiplies are needed to de�ne the grid and build

a new di�erentiation matrix. This is reasonably expensive, but the update can be

done rarely during a run. Compare this to �nite di�erence on the �nest scale. The

�lters for 1-st and 2-nd order di�erentiation are length 5. Each step of Runge-Kutta

requires, therefore, at least 10N multiplies. If we are using a fourth order RK then

we have at least 40N multiplies for each time step. It is, therefore, fair to say that

the grid update step requires about the same amount of work as one time step taken

using the full grid.

8.2 Work Saved with Larger Time Step

All the numerical scenarios use explicit time stepping. For Burgers' equation with

viscosity � the time step is set to,

�t = �
(�x)2

�
;

where �x is the minimum spacing of the grid produce by WOFD. At the beginning of

any simulation if the initial condition is smooth, as measured by a wavelet decomposi-

tion, then the minimum�x produced by WOFD is much larger than the �x used on

the �nest grid. This allows a much larger time step without introducing large errors.
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The larger time step means that far fewer total time steps will need to be taken to

arrive at the �nal time. Fewer time steps gives a signi�cant savings in terms of total

operations performed.
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9 WOFD in Higher Dimensions

The e�ectiveness of WOFD has been illustrated in 1 dimension. The natural follow-

up question would concern the e�ectiveness of WOFD in higher dimensions. At this

point let us break WOFD into two parts: the �rst part is the grid de�nition, and the

second part is the di�erencing on this new grid.

Grid de�nition falls within the realm of local spectral analysis. That is, one is

interested in the spectrum locally. Local high frequency data requires a grid density

su�cient to resolve the highest frequency, whereas local low frequency data can be re-

solved with a relatively coarse grid. The wavelet structure provides a very convenient

mechanism to perform this nested group of short-time Fourier transforms. For higher

dimensions, say 2 dimensions, one need only choose a coordinate system for the space

and simply perform the wavelet �ltering throughout all of the data and parallel to

each axis. The most common question at this point concerns the e�ectiveness of this

method of grid selection when the data is composed of structure which is at a 45

degree angle to the axes. The simple answer is that it works well since all structures

within the data can be projected onto the orthogonal coordinate system which spans

the space. If, however, one is not satis�ed with the grid given in this situation then

the parameter which adjusts the sensitivity of grid selection can be adjusted. With

this sensitivity adjustment, one will always �nd a suitable grid. Included here are

three sets of data which will illustrate the e�ective grid selection. The �rst function

is a discontinuity at a 45 degree angle to the axes, see Figure (8), and the grid chosen

for this data, see (9). The second set of data corresponds, roughly, to the inner and

outer 
ow near a boundary,

f(x; y) = 1 � e
�y2

x ; (49)

see Figure (10), and the grid chosen in this case, see Figure (11). The third set of data

is numerically-generated pressure from a turbulent 
ow. A contour diagram is given

in Figure (12) and the grid chosen is given in Figure (13). In all cases the wavelet is

34



the D4 wavelet.

Di�erencing on a grid chosen by WOFD will depend on the application. The D4 is

the optimal wavelet if one is using a central optimal 4th-order �nite di�erence method

in the sense of Section 3. But one is not con�ned to matching the wavelet precisely

to the di�erencing method. The only recommendation is that the stencil of the �nite

di�erence method be of roughly the same size as the length of the wavelet �lters.

This will insure that in the grid selection one is not �ltering data which is too far

outside of the support of the di�erencing stencil. Also, depending on the application

one might need a reliable mechanism for choosing locally rectangular grids. In this

case one would choose the �nest grid produced by WOFD in each rectangular region.

One other issue is the use of WOFD to re�ne beyond the `�nest grid'. For the 1

dimension case considered in this paper there was always an underlying �nest grid.

This was a theoretical convenience and not a necessity or even a desirable feature.

Based on the energy or magnitude of the smallest scale wavelet coe�cients one can

re�ne to any desirable grid density, see [10].
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Figure 8: A discontinuity at a 45 degree angle to the axes.
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Figure 9: The grid chosen by the wavelet decomposition for a discontinuity at a 45
degree angle to the axes.
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Figure 10: A snapshot of the inner and outer 
ow near a boundary.

38



0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140
Grid Chosen by Wavelets

Figure 11: The grid chosen by the wavelet decomposition of the 
ow near a boundary.
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Figure 13: The grid chosen by the wavelet decomposition of the pressure from tur-
bulent data.
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10 Conclusion

The WOFD method is essentially the same as a Daubechies-based wavelet method.

However, two serious problems encountered with wavelet numerical methods are over-

come. That is, boundary conditions can now be imposed in exactly the same manner

they are imposed for �nite di�erence methods. Furthermore, there is no longer a

problem with nonlinear terms since we are now working with the point values of the

function in the physical space. WOFD will approximate a conservative numerical

method as long as one is working with a conservative numerical method on the �nest

uniform grid. This approximation can be as �ne as the user wishes.

In this paper the WOFD method has been explored for the case of a 5-point 4-

th order �nite di�erence operator on an arbitrary grid. We can, however, use this

method with higher order schemes by using the �lters associated with the higher

order Daubechies wavelets to de�ne the grid. The only suggestion is that the stencil

size of the numerical scheme be of roughly the same size as the length of the �lters.

Higher dimensional applications of WOFD remain to be explored. As mentioned,

WOFD can be broken into two parts, the grid selection and the di�erencing. The

grid selection step requires the wavelet analysis to detect the local oscillation content

of the data. Based on this grid, one can choose a number of ways to apply �nite

di�erencing. It has been shown here that grid selection is quite e�ective for `di�cult'

data sets in two dimensions. Future research will combine this 2-dimensional grid

selection with appropriate di�erencing.
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